Microscopic Theory of Fission Thursday, October 25

Walid Younes

Physical Sciences Directorate/N Division

This work performed under the auspices of the U.S. department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Lawrence Livermore National Laboratory

Fission as a grand nuclear-physics challenge

- True quantum many-body problem
- Large-amplitude collective motion ⇒ not perturbative
- Not directly observable experimentally (only products are seen)
- Involves both single-particle and collective d.o.f., and their coupling
- Understanding fission
 ⇔ understanding a wealth of nuclear phenomena
 - Compound nucleus formation/fusion
 - adiabatic versus non-adiabatic phenomena
 - Transition from single-particle to collective d.o.f.
 - Shape coexistence, shape isomerism...

A 70-year old problem waiting for a solution

The microscopic method: statics

- Based on highly successful work at BIII
- Main tool: finite-range, constrained Hartree-Fock-Bogoliubov
 - nucleus is built up from individual protons and neutrons
 - only phenomenological input is effective inter-nucleon interaction (Gogny, D1S)
 - finite-range interaction ⇒ mean field and pairing treated on same footing ⇒ truly self-consistent
 - constraints introduce external fields to "mold" nucleus into desired "shape"
 - choose set of "collective" coordinates (e.g., Q₂, Q₃, Q₄)
- LLNL implementation:
 - <u>Finite RANge Constrained Hartree-Fock-Bogoliubov with Rapid Iteration Execution (FRANCHBRIE)</u>

The microscopic method: dynamics

- Generator-coordinate method + Gaussian-overlap approximation
 - Solve HFB for values of collective coordinates on a mesh
 - Construct wave packet as linear superposition of HFB solutions
 - weights are given by variational procedure that minimizes energy
 - Simplification: assume overlap of HFB solutions is Gaussian function of difference in collective-coordinates ⇒ favor similar "shapes"
- Wave packet is spread over all nuclear configurations
- Wave packet is allowed to evolve naturally out to scission
- Yields <u>Collective Hamiltonian</u> built from single-particle d.o.f.!

Fully quantum-mechanical approach

Energy surface: elongation & asymmetry

Densities along most likely path

Reflection symmetry is spontaneously broken \Rightarrow asymmetric fission ($Q_3 \neq 0$)

Physical Sciences Directorate - N Division

Energy surface: elongation & necking

- Barrier separates fission (V1) and fusion (V2) valleys
- Barrier disappears at high elongations ⇒ "hot" fission
- Q_₄ controls thickness of neck
- Introduction of Q₄ leads to new physics: hot vs cold fission
 - fission at low $Q_2 \Rightarrow$ fragments are close \Rightarrow TKE $\uparrow \Rightarrow E_x \downarrow$
 - fission at high $Q_2 \Rightarrow$ fragments are far \Rightarrow TKE $\downarrow \Rightarrow E_x \uparrow$

Physical Sciences Directorate - N Division

Hot vs. cold fission

The cold-fission mechanism:

• Q_{20} - Q_{40} coupling from two sources

$$H_{\text{coll}} = \frac{\partial}{\partial q_2} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_2} + \frac{\partial}{\partial q_4} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_4} + \frac{\partial}{\partial q_2} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_4} + \frac{\partial}{\partial q_4} \frac{$$

Hot vs. cold fission

The cold-fission mechanism:

• Q_{20} - Q_{40} coupling from two sources

$$H_{\text{coll}} = \frac{\partial}{\partial q_2} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_2} + \frac{\partial}{\partial q_4} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_4} + \frac{\partial}{\partial q_2} \frac{-\hbar^2}{2M(q_2, q_4)} \frac{\partial}{\partial q_4} + \frac{\partial}{\partial q_4} \frac{$$

- Transverse motion
 - □ excitation above barrier
 - ☐ slowing-down along longitudinal dir.
- effect mimicked by ad-hoc dissipation term in semiclassical models

Naturally built into the microscopic approach

Fragment excitation and kinetic energies

Integrate densities separately:

- 135I/105Nb
- d = 16.9 fm
- TKE = 185.5 MeV
- TXE = 18.9 MeV
- $E_x(^{135}I) = 10.2 \text{ MeV}$
- \Rightarrow <v>(135|) \approx 1.04
- $E_x(^{105}Nb) = 8.7 \text{ MeV}$
- \Rightarrow <v>(105Nb) \approx 1.00

Calculation can be repeated for any mass split/any exit point

Physical Sciences Directorate - N Division

Conclusion

- Microscopic fission-theory program at LLNL (Younes/Gogny)
 - Based on BIII 30-year effort
 - Homegrown code essential for adaptability to needs, new phys.
 - Adapted to LLNL computational resources
- Microscopic approach is incredibly powerful and rich
 - Explains wealth of phenomena without ad-hoc modifications
- Calculations of ²⁴⁰Pu fission-fragment properties have begun
 - Extracted TKE, TXE, E_x for most likely (hot) fragmentation
- Next:
 - Large-scale computations of fragment properties
 - Investigation of formal criteria for scission
 - Investigation of best collective coordinates, esp. at scission
 - Dynamics
 - •

